

Form C: Type Test Verification Report

Type Approval and Manufacturer declaration of compliance with the requirements of G98.

This form should be used when making a Type Test submission to the Energy Networks Association (ENA).

If the **Micro-generator** is **Fully Type Tested** and already registered with the ENA **Type Test Verification Report** Register, the **Installation Document** should include the **Manufacturer**'s Reference Number (the Product ID), and this form does not need to be submitted.

Where the **Micro-generator** is not registered with the ENA **Type Test Verification Report** Register this form needs to be completed and provided to the **DNO**, to confirm that the **Micro-generator** has been tested to satisfy the requirements of this EREC G98.

Manufactur	Manufacturer's reference number		MOD 9000TL3-XH.			
Micro-generator technology		MOD 3000TL3-XH, MOD 4000TL3-XH, MOD 5000TL3-XH , MOD 6000TL3-XH, MOD 7000TL3-XH , MOD 8000TL3-XH , MOD 9000TL3-X H, MOD 10000TL3-XH.				
Manufactur	er name		Shenzhen	Growatt New E	Energy Co., Ltd.	
Address			Demonstra	4-13th Floor, Building A, Sino-German Europe Industrial Demonstration Park, No. 1, Hangcheng Avenue, Bao'an District, Shenzhen, Guangdong, China.		
Tel	+86 755 295	51 5888		Fax	+86 755 2747 2131	
E-mail	Peng.zhu@	growatt.com		Web site	www.ginverter.com	
		Connection (Option			
Registered use separate		N/A	kW single p	ohase, single, sp	olit or three phase system	
more than or connection of	. •	3-10	kW three p	hase		
N/A		kW two phases in three phase system				
N/A			kW two pha	ases split phase	system	

Manufacturer Type Test declaration. - I certify that all products supplied by the company with the above **Type Tested** reference number will be manufactured and tested to ensure that they perform as stated in this document, prior to shipment to site and that no site modifications are required to ensure that the product meets all the requirements of EREC G98.

Signed	Jeng Thu	On behalf of	Shenzhen Growatt New Energy Co., Ltd.

Note that testing can be done by the **Manufacturer** of an individual component or by an external test house.

Where parts of the testing are carried out by persons or organisations other than the **Manufacturer** then that person or organisation shall keep copies of all test records and results supplied to them to verify that

the testing has been carried out by people with sufficient technical competency to carry out the tests.

1.Operating Range: This test should be carried out as specified in EN 50438 D.3.1.

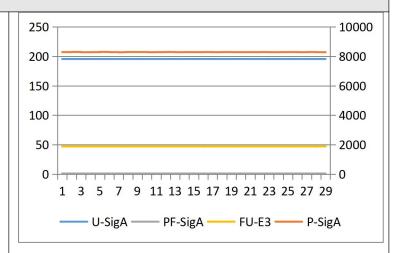
Active Power shall be recorded every second. The tests will verify that the **Micro-generator** can operate within the required ranges for the specified period of time.

The Interface Protection shall be disabled during the tests.

In case of a PV Micro-generator the PV primary source may be replaced by a DC source.

In case of a full converter **Micro-generator** (eg wind) the primary source and the prime mover **Inverter**/rectifier may be replaced by a **DC** source.

In case of a DFIG **Micro-generator** the mechanical drive system may be replaced by a test bench motor.

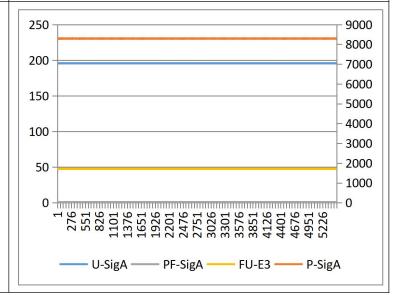

Test 1

Voltage = 85% of nominal (195.5 V),

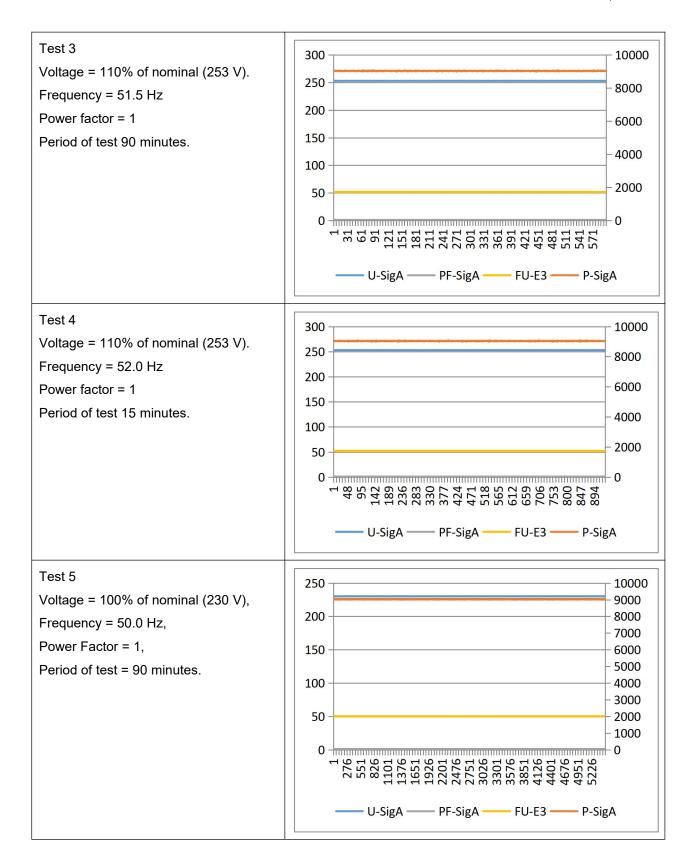
Frequency = 47 Hz,

Power Factor = 1.

Period of test 20 s.


Test 2

Voltage = 85% of nominal (195.5 V)


Frequency = 47.5 Hz

Power factor = 1

Period of test 90 minutes.

Test 6 RoCoF withstand

Confirm that the Power Generating Module is capable of staying connected to the Distribution Network and operate at rates of change of frequency up to 1 Hzs-1 as measured over a period of 500 ms..

2.Power Quality – Harmonics: These tests should be carried out as specified in BS EN 61000-3-2. The chosen test should be undertaken with a fixed source of energy at two power levels a) between 45 and 55% and b) at 100% of Registered Capacity. The test requirements are specified in Annex A1 A.1.3.1 (Inverter connected) or Annex A2 A.2.3.1 (Synchronous).

Micro-generator tested to BS EN 61000-3-2

Micro-go	Micro-generator rating per phase (rpp)		kW	NV=MV*3.68/rpp
Harmonic	At 45-55% of Registered Capacity		Registered pacity	

	Average harmonic current results – Phase 1									
	Measured Value MV in Amps	Normalis ed Value (NV) in Amps	Measured Value MV in Amps	Normalis ed Value (NV) in Amps	Limit in BS EN 61000- 3-2 in Amps	Higher limit for odd harmonics 21 and above				
2	0.213	0.235	0.278	0.307	1.080					
3	0.023	0.025	0.039	0.043	2.300					
4	0.136	0.150	0.250	0.276	0.430					
5	0.038	0.042	0.125	0.138	1.140					
6	0.004	0.005	0.002	0.002	0.300					
7	0.042	0.046	0.063	0.070	0.770					
8	0.030	0.033	0.036	0.040	0.230					
9	0.014	0.016	0.008	0.008	0.400					

10	0.036	0.040	0.046	0.051	0.184	
11	0.031	0.034	0.029	0.032	0.330	
12	0.005	0.005	0.005	0.005	0.153	
13	0.039	0.043	0.053	0.058	0.210	
14	0.035	0.038	0.055	0.060	0.131	
15	0.010	0.011	0.005	0.005	0.150	
16	0.021	0.023	0.052	0.057	0.115	
17	0.029	0.032	0.052	0.057	0.132	
18	0.008	0.009	0.003	0.003	0.102	
19	0.017	0.019	0.037	0.041	0.118	
20	0.015	0.017	0.033	0.037	0.092	
21	0.004	0.005	0.003	0.003	0.107	0.160
22	0.018	0.020	0.039	0.043	0.084	
23	0.023	0.025	0.028	0.031	0.098	0.147
24	0.003	0.004	0.005	0.005	0.077	
25	0.020	0.022	0.023	0.025	0.090	0.135
26	0.017	0.018	0.020	0.022	0.071	
27	0.001	0.001	0.002	0.002	0.083	0.124
28	0.011	0.012	0.013	0.014	0.066	
29	0.024	0.026	0.024	0.026	0.078	0.117
30	0.006	0.007	0.002	0.002	0.061	
31	0.014	0.016	0.027	0.030	0.073	0.109
32	0.007	0.008	0.015	0.016	0.058	
33	0.006	0.006	0.005	0.005	0.068	0.102
34	0.004	0.004	0.007	0.008	0.054	
35	0.016	0.018	0.021	0.024	0.064	0.096
36		0.007	0.013	0.015	0.051	

37	0.009	0.010	0.019	0.021	0.061	0.091
38	0.006	0.007	0.021	0.023	0.048	
39	0.003	0.003	0.005	0.006	0.058	0.087
40	0.003	0.003	0.006	0.006	0.046	

	Average harmonic current results – Phase 2									
	Measured Value MV in Amps	Normalis ed Value (NV) in Amps	Measured Value MV in Amps	Normalis ed Value (NV) in Amps	Limit in BS EN 61000- 3-2 in Amps	Higher limit for odd harmonics 21 and above				
2	0.171	0.189	0.320	0.353	1.080					
3	0.018	0.020	0.036	0.040	2.300					
4	0.162	0.179	0.256	0.283	0.430					
5	0.018	0.020	0.124	0.137	1.140					
6	0.013	0.015	0.032	0.035	0.300					
7	0.054	0.059	0.080	0.089	0.770					
8	0.030	0.033	0.022	0.024	0.230					
9	0.012	0.013	0.011	0.012	0.400					
10	0.042	0.046	0.044	0.049	0.184					
11	0.030	0.034	0.028	0.031	0.330					
12	0.010	0.011	0.012	0.014	0.153					
13	0.046	0.051	0.051	0.057	0.210					
14	0.033	0.037	0.063	0.070	0.131					
15	0.004	0.004	0.004	0.004	0.150					
16	0.026	0.029	0.051	0.056	0.115					
17	0.029	0.032	0.050	0.055	0.132					
18	0.009	0.010	0.003	0.004	0.102					
19	0.021	0.023	0.033	0.037	0.118					

20	0.006	0.007	0.036	0.040	0.092	
						0.400
21	0.004	0.004	0.003	0.004	0.107	0.160
22	0.030	0.033	0.027	0.029	0.084	
23	0.022	0.024	0.032	0.035	0.098	0.147
24	0.008	0.009	0.007	0.008	0.077	
25	0.017	0.019	0.020	0.022	0.090	0.135
26	0.018	0.020	0.026	0.029	0.071	
27	0.006	0.007	0.006	0.007	0.083	0.124
28	0.014	0.016	0.015	0.017	0.066	
29	0.021	0.024	0.023	0.026	0.078	0.117
30	0.002	0.002	0.002	0.003	0.061	
31	0.014	0.015	0.023	0.025	0.073	0.109
32	0.008	0.009	0.020	0.022	0.058	
33	0.008	0.009	0.002	0.003	0.068	0.102
34	0.005	0.005	0.007	0.007	0.054	
35	0.015	0.016	0.021	0.023	0.064	0.096
36	0.003	0.004	0.003	0.003	0.051	
37	0.012	0.013	0.020	0.022	0.061	0.091
38	0.002	0.002	0.007	0.008	0.048	
39	0.003	0.003	0.005	0.005	0.058	0.087
40	0.001	0.001	0.013	0.015	0.046	

Average harmonic current results – Phase 3										
	Measured Value MV in Amps	Normalis ed Value (NV) in Amps	Measured Value MV in Amps	Normalis ed Value (NV) in Amps	Limit in BS EN 61000- 3-2 in Amps	Higher limit for odd harmonics 21 and above				
2	0.103	0.114	0.376	0.416	1.080					

		1		1	1	
3	0.026	0.028	0.043	0.048	2.300	
4	0.156	0.172	0.280	0.309	0.430	
5	0.020	0.022	0.098	0.108	1.140	
6	0.020	0.022	0.029	0.032	0.300	
7	0.050	0.055	0.074	0.082	0.770	
8	0.020	0.022	0.031	0.034	0.230	
9	0.012	0.013	0.013	0.014	0.400	
10	0.039	0.043	0.048	0.054	0.184	
11	0.040	0.044	0.036	0.040	0.330	
12	0.004	0.005	0.007	0.008	0.153	
13	0.042	0.047	0.056	0.062	0.210	
14	0.026	0.029	0.047	0.052	0.131	
15	0.007	0.008	0.002	0.002	0.150	
16	0.012	0.013	0.053	0.058	0.115	
17	0.033	0.036	0.058	0.064	0.132	
18	0.006	0.006	0.010	0.011	0.102	
19	0.016	0.017	0.040	0.044	0.118	
20	0.013	0.014	0.032	0.036	0.092	
21	0.013	0.014	0.006	0.006	0.107	0.160
22	0.011	0.012	0.029	0.032	0.084	
23	0.028	0.031	0.036	0.040	0.098	0.147
24	0.010	0.011	0.007	0.008	0.077	
25	0.014	0.016	0.018	0.020	0.090	0.135
26	0.021	0.023	0.022	0.024	0.071	
27	0.005	0.006	0.002	0.003	0.083	0.124
28	0.013	0.014	0.017	0.019	0.066	
29	0.025	0.028	0.029	0.032	0.078	0.117
	1	1				i

30	0.003	0.003	0.008	0.009	0.061	
31	0.008	0.009	0.030	0.033	0.073	0.109
32	0.006	0.007	0.004	0.004	0.058	
33	0.006	0.007	0.009	0.010	0.068	0.102
34	0.010	0.011	0.006	0.006	0.054	
35	0.012	0.013	0.022	0.025	0.064	0.096
36	0.005	0.006	0.018	0.020	0.051	
37	0.008	0.009	0.016	0.018	0.061	0.091
38	0.003	0.004	0.013	0.015	0.048	
39	0.001	0.001	0.003	0.004	0.058	0.087
40	0.002	0.003	0.016	0.018	0.046	

Note the higher limits for odd harmonics 21 and above are only allowable under certain conditions, if these higher limits are utilised please state the exemption used as detailed in part 6.2.3.4 of BS EN 61000-3-2 in the box below.

3.Power Quality – Voltage fluctuations and Flicker: These tests should be undertaken in accordance with EREC G98 Annex A1 A.1.3.3 (Inverter connected) or Annex A2 A.2.3.3 (Synchronous).

	Starting			Stopping			Running	
	d max	d c	d(t)	d max	d c	d(t)	P _{st}	P _{lt} 2 hours
Measured Values at test impedance	0.67	0.29	0	0.63	0.25	0	0.26	0.25
Normalised to standard impedance	0.67	0.29	0	0.63	0.25	0	0.26	0.25
Normalised to required maximum impedance								
Limits set	4%	3.3%	3.3%	4%	3.3%	3.3%	1.0	0.65

under BS EN 61000- 3-11							
Test Impedance	R	0.24	Ω	X	0.15	Ω	
Standard Impedance	R	0.24 * 0.4 ^	Ω	Х	0.15 * 0.25 ^	Ω	
Maximum Impedance	R	-	Ω	Х	-	Ω	

Applies to three phase and split single phase Micro-generators.

For voltage change and flicker measurements the following formula is to be used to convert the measured values to the normalised values where the power factor of the generation output is 0.98 or above.

Normalised value = Measured value*reference source resistance/measured source resistance at test point.

Single phase units reference source resistance is 0.4 Ω

Two phase units in a three phase system reference source resistance is $0.4~\Omega$.

Two phase units in a split phase system reference source resistance is $0.24~\Omega$.

Three phase units reference source resistance is $0.24~\Omega$.

Where the power factor of the output is under 0.98 then the X to R ratio of the test impedance should be close to that of the Standard Impedance.

The stopping test should be a trip from full load operation.

The duration of these tests need to conform to the particular requirements set out in the testing notes for the technology under test. Dates and location of the test need to be noted below.

Test start date	13,Jun, 2022	Test end date	13,Jun, 2022
Test location	Growatt certified testin	g laboratory	

4.Power quality – DC injection: This test should be carried out in accordance with EN 50438 Annex D.3.10

Test power level (10K)	20%	50%	75%	100%
Recorded value in Amps	19.4mA/18.6mA/	27.4mA/20.3mA/	19.3mA/19.8mA/	30.1mA/19.8mA/
	25.6mA	18.4mA	28.2mA	21.6mA
as % of rated	0.13%/0.13%/	0.19%/0.14%/	0.13%/0.14%/	0.21%/0.14%/
AC current	0.18%	0.13%	0.19%	0.15%/
Limit	0.25%	0.25%	0.25%	0.25%

[^] Applies to single phase **Micro-generators** and **Micro-generators** using two phases on a three phase system.

Test power level (9K)	20%	50%	75%	100%
Recorded value in Amps	22.4mA/17.5mA/ 18.1mA	24.7mA/19.2mA/ 18.3mA	26.5mA/18.7mA/ 19.5mA	18.8mA/19.7mA/ 27.9mA
as % of rated AC current	0.17%/0.13%/ 0.13%	0.17%/0.14%/ 0.13%	0.19%/0.13%/ 0.14%	0.13%/0.14%/ 0.20%
Limit	0.25%	0.25%	0.25%	0.25%
Test power level (8K)	20%	50%	75%	100%
Recorded value in Amps	15.2mA/16.8mA/ 19.5mA	15.5mA/16.7mA/ 19.8mA	17.2mA/18.3mA/ 21.2mA	23.6mA/18.8mA/ 19.1mA
as % of rated AC current	0.13%/0.14%/ 0.17%	0.13%/0.14%/ 0.17%	0.15%/0.16%/ 0.18%	0.20%/0.16%/ 0.16%
Limit	0.25%	0.25%	0.25%	0.25%
Test power level (7K)	20%	50%	75%	100%
Recorded value in Amps	15.2mA/16.4mA/ 17.5mA	17.4mA/16.6mA/ 15.5mA	18.5mA/15.4mA/ 16.6mA	17.5mA/18.1mA/ 19.3mA
as % of rated AC current	0.15%/0.16%/ 0.17%	0.17%/0.16%/ 0.15%	0.18%/0.15%/ 0.16%	0.17%/0.18%/ 0.19%
Limit	0.25%	0.25%	0.25%	0.25%
Test power level (6K)	20%	50%	75%	100%
Recorded value in Amps	12.2mA/11.5mA/ 13.5mA	11.7mA/12.1mA/ 13.8mA	12.7mA/13.1mA/ 15.2mA	13.2mA/12.9mA/ 15.6mA
as % of rated AC current	0.14%/0.13%/ 0.15%	0.13%/0.14%/ 0.16%	0.17%/0.15%/ 0.17%	0.15%/0.15%/ 0.18%
Limit	0.25%	0.25%	0.25%	0.25%
Test power level (5K)	20%	50%	75%	100%
Recorded value in Amps	10.4mA/11.3mA/ 11.7mA	10.5mA/11.4mA/ 12.1mA	12.5mA/10.8mA/ 11.6mA	11.2mA/12.1mA/ 13.2mA
as % of rated AC current	0.14%/0.15%/ 0.16%	0.14%/0.15%/ 0.17%	0.17%/0.15%/ 0.16%	0.15%/0.17%/ 0.18%
	I.	1	1	1

Limit	0.25%	0.25%	0.25%	0.25%
Test power level (4K)	20%	50%	75%	100%
Recorded value in Amps	8.64mA/8.85mA/ 9.82mA	8.72mA/9.02mA/ 9.72mA	10.4mA/9.53mA/ 8.75mA	11.3mA/9.6mA/ 9.3mA
as % of rated AC current	0.15%/0.15%/ 0.17%	0.15%/0.16%/ 0.17%	0.18%/0.16%/ 0.15%	0.19%/0.16%/ 0.16%
Limit	0.25%	0.25%	0.25%	0.25%
Test power level (3K)	20%	50%	75%	100%
Recorded value in Amps	6.51mA/6.72mA/ 7.06mA	6.63mA/6.98mA/ 7.32mA	6.78mA/7.22mA/ 7.58mA	7.12mA/7.45mA/ 7.89mA
as % of rated AC current	0.15%/0.15%/ 0.16%	0.15%/0.16%/ 0.17%	0.15%/0.17%/ 0.17%	0.16%/0.17%/ 0.18%
Limit	0.25%	0.25%	0.25%	0.25%

5.Power Quality – Power factor: This test shall be carried out in accordance with EN 50548 Annex D.3.4.1 but with nominal voltage -6% and +10%. Voltage to be maintained within $\pm 1.5\%$ of the stated level during the test.

	216.2 V	230 V	253 V
20% of Registered Capacity	0.9924	0.9931	0.9922
50% of Registered Capacity	0.9958	0.9964	0.9957
75% of Registered Capacity	0.9970	0.9975	0.9969
100% of Registered Capacity	0.9988	0.9993	0.9986
Limit	>0.95	>0.95	>0.95

6.Protection – Frequency tests: These tests should be carried out in accordance with EN 50438 Annex D.2.4 and the notes in EREC G98 Annex A1 A.1.2.3 (Inverter connected) or Annex A2 A.2.2.3 (Synchronous)

Function	Setting	Trip test	"No trip tests"
----------	---------	-----------	-----------------

	Frequency	Time delay	Frequency	Time delay	Frequency /time	Confirm no trip
U/F stage	47.5 Hz	20 s	47.50Hz	20.019s	47.7 Hz 30 s	No Trip
U/F stage	47 Hz	0.5 s	47.00Hz	0.520s	47.2 Hz 19.5 s	No Trip
					46.8 Hz 0.45 s	No Trip
O/F stage	52 Hz	0.5 s	52.01Hz	0.516s	51.8 Hz 120.0 s	No Trip
					52.2 Hz 0.45 s	No Trip

Note. For frequency trip tests the frequency required to trip is the setting \pm 0.1 Hz. In order to measure the time delay a larger deviation than the minimum required to operate the projection can be used. The "No trip tests" need to be carried out at the setting \pm 0.2 Hz and for the relevant times as shown in the table above to ensure that the protection will not trip in error.

7.Protection – Voltage tests: These tests should be carried out in accordance with EN 50438 Annex D.2.3 and the notes in EREC G98 Annex A1 A.1.2.2 (Inverter connected) or Annex A2 A.2.2.2 (Synchronous)

Function	Setting		Trip test		"No trip tests"	
	Voltage	Time delay	Voltage	Time delay	Voltage /time	Confirm no trip
U/V	184 V	2.5 s	183.6V	2.514 s	188 V 5.0 s	No Trip
					180 V 2.45 s	No Trip
O/V stage 1	262.2 V	1.0 s	262.54V	1.021s	258.2 V 5.0 s	No Trip
O/V stage 2	273.7 V	0.5 s	274.23V	0.517s	269.7 V 0.95 s	No Trip
					277.7 V 0.45 s	No Trip

Note for Voltage tests the Voltage required to trip is the setting ± 3.45 V. The time delay can be measured at a larger deviation than the minimum required to operate the protection. The No trip tests need to be carried out at the setting ± 4 V and for the relevant times as shown in the table above to ensure that the protection will not trip in error.

8.Protection – Loss of Mains test: For PV Inverters shall be tested in accordance with BS EN 62116. Other Inverters should be tested in accordance with EN 50438 Annex D.2.5 at 10%, 55% and 100% of rated power.

To be carried out at three output power levels with a tolerance of plus or minus 5% in Test Power levels.

Test Power	10%	55%	100%	10%	55%	100%
Balancing load on islanded network	95% of Registered Capacity	95% of Registered Capacity	95% of Registered Capacity	105% of Registered Capacity	105% of Registered Capacity	105% of Registered Capacity
Trip time. Limit is 0.5 s	0.312s	0.374s	0.335s	0.278s	0.335 s	0.385 s
For Multi phase N single fuse as wel			at the device s	shuts down co	rrectly after the	e removal of a
Test Power	10%	55%	100%	10%	55%	100%
Balancing load on islanded network	95% of Registered Capacity	95% of Registered Capacity	95% of Registered Capacity	105% of Registered Capacity	105% of Registered Capacity	105% of Registered Capacity
Trip time. Ph1 fuse removed	0.285 s	0.321 s	0.348 s	0.312 s	0.323 s	0.354 s
Test Power	10%	55%	100%	10%	55%	100%
Balancing load on islanded network	95% of Registered Capacity	95% of Registered Capacity	95% of Registered Capacity	105% of Registered Capacity	105% of Registered Capacity	105% of Registered Capacity
Trip time. Ph2 fuse removed	0.318 s	0.367 s	0.349 s	0.332 s	0.349 s	0.352 s
Test Power	10%	55%	100%	10%	55%	100%
Balancing load on islanded network	95% of Registered Capacity	95% of Registered Capacity	95% of Registered Capacity	105% of Registered Capacity	105% of Registered Capacity	105% of Registered Capacity
Trip time. Ph3 fuse removed	0.353 s	0.366 s	0.352 s	0.354 s	0.309 s	0.314 s
Note for technolous establishing that to 1.0 s for these technology.	he trip occurre					
Indicate additional	shut down tim	e included in a	bove results.		40ms	
For Inverters test table.	ted to BS EN 6	32116 the follo	wing sub set o	of tests should	l be recorded i	n the following
Test Power and	33%	66%	100%	33%	66%	100%
imbalance	-5% Q	-5% Q	-5% P	+5% Q	+5% Q	+5% P
	Test 22	Test 12	Test 5	Test 31	Test 21	Test 10
Trip time. Limit	0.302	0.359	0.378	0.295	0.356	0.395
			•			•

is 0.5 s										
9.Protection – Frequer accordance with EREC C										
Start Frequ		rt Frequency	Chang	е		Confirm no trip				
Positive Vector Shift	49.0) Hz	+50 de	grees		No T	rip			
Negative Vector Shift	50.0) Hz	- 50 de	egrees		No T	rip			
10.Protection - Freque 11.3, test procedure in A										
Ramp range	Tes	t frequency ra	mp:	Test D	urati	on	Con	firm no trip		
49.0 Hz to 51.0 Hz	+0.9	95 Hzs ⁻¹		2.1 s			No	Trip		
51.0 Hz to 49.0 Hz	-0.9	5 Hzs ⁻¹		2.1 s			No	Trip		
11.Limited Frequency accordance with EN 504 out using the specific three	38 Ann	ex D.3.3 Powe	er respo	onse to c	over-	frequ	uency			
Test sequence at Registered Capacity >80%	A	easured ctive Power utput		uency	Prir	Primary Power Source			Active Power Gradient	
Step a) 50.00 Hz ±0.01 F	z 90	022.45W	50.0	1Hz	924	43.6	5W			-
Step b) 50.45 Hz ±0.05 H	z 8	930.25W	50.4	6Hz						-
Step c) 50.70 Hz ±0.10 H	z 84	482.65W	50.7	0Hz						-
Step d) 51.15 Hz ±0.05 H	z 7	728.34W	51.1	4Hz						-
Step e) 50.70 Hz ±0.10 H	z 84	475.45W	50.7	1Hz						-
Step f) 50.45 Hz ±0.05 H	z 89	933.19W	50.4	4Hz						-
Step g) 50.00 Hz ±0.01 F	z 9	024.56W	50.0	0Hz						
Test sequence at Registered Capacity 40 - 60%	% A	easured ctive Power utput		uency	Prir	mary	Pow	er Source		Active Power Gradient
Step a) 50.00 Hz ±0.01 H	z 4	498.67W	49.9	9Hz	46	15.3	5W		T	-
Step b) 50.45 Hz ±0.05 H	z 4	453.21W	50.4	6Hz						-
Step c) 50.70 Hz ±0.10 H	z 42	230.69W	50.7	0Hz						-
Step d) 51.15 Hz ±0.05 H	z 38	845.24W	51.1	5Hz	-		_			

Step e) 50.70 Hz ±0.10 Hz 4	225.69W	50.71	Hz			-
Step f) 50.45 Hz ±0.05 Hz	454.57W	50.45	Hz			-
Step g) 50.00 Hz ±0.01 Hz 4	503.57W	50.00	Hz			
Steps as defined in EN 50438						
12.Power output with falling 50438 Annex D.3.2 active power				ould be carried	out in accor	dance with E
Test sequence		Measured Active Power Output		uency	Primary pov	wer source
Test a) 50 Hz ± 0.01 Hz	9023.42 W		50.00 Hz		9230.45 W	
Test b) Point between 49.5 Hz	z 9018.76W		49.50) Hz	9225.62 W	
Test c) Point between 47.5 Hz	9011.28W		47.51 Hz		9216.79 W	
NOTE: The operating point in T	est (b) and (c) s	hall be r	naintai	ned for at least	5 minutes	

Test should prove that the reconnection sequence starts after a minimum delay of 20 s for restoration of voltage and frequency to within the stage 1 settings of Table 2.

Time delay setting	Measured delay		Checks on no reconnection when voltage or frequency is brought to just outside stage 1 limits of table 2.				
20s	30.08		At 266.2 V	At 180.0 V	At 47.4 Hz	At 52.1 Hz	
Confirmation that the Microgenerator does not re-connect.		Yes	Yes	Yes	Yes		

14.Fault level contribution: These tests shall be carried out in accordance with EREC G98 Annex A1 A.1.3.5 (**Inverter** connected) and Annex A2 A.2.3.4 (Synchronous).

For machines with electro-magne	For Inverter output				
Parameter	Symbol	Value	Time after fault	Volts	Amps
Peak Short Circuit current	ĺρ		20 ms	97.2V	25.8A
Initial Value of aperiodic current	А		100 ms	41.5V	14.6
Initial symmetrical short-circuit current*	I _k		250 ms	60.3V	15.8

Decaying (aperiodic) component of short circuit current*	İDC		500 ms	45.6V	9.9
Reactance/Resistance Ratio of source*	X/ _R	-	Time to trip	0.229	In seconds

For rotating machines and linear piston machines the test should produce a 0 s - 2 s plot of the short circuit current as seen at the **Micro-generator** terminals.

* Values for these parameters should be provided where the short circuit duration is sufficiently long to enable interpolation of the plot

15.Logic Interface.	Yes/or NA
This equipment is equipped with RJ45 terminal for logic interface that being received the signal from the DNO, the connection should be installed per installation manual, and the signal should be a simple binary output that captured by RJ45 terminal(PIN 5 and 1 for detecting the signal). Once the signal actived, the inverter will reduce its active power to zero within 5s.	Yes
16.Self-Monitoring solid state switching: No specified test requirements. Refer to EREC G98 Annex A1 A.1.3.6 (Inverter connected).	Yes/or NA
It has been verified that in the event of the solid state switching device failing to disconnect the Micro-generator , the voltage on the output side of the switching device is reduced to a value below 50 V within 0.5 s.	NA
17. Cyber security	Yes/or NA
Confirm that the Manufacturer or Installer of the Micro-generator has provided a statement describing how the Micro-generator has been designed to comply with cyber security requirements, as detailed in 9.7.	Yes
Additional comments	